

Interdomain routing with BGP4 Part 1/5

Olivier Bonaventure

Department of Computing Science and Engineering Université catholique de Louvain (UCL) Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve (Belgium)

Email : Bonaventure @ info.ucl.ac.be
URL : http://www.info.ucl.ac.be/people/OBO

BGP/2003.1.1

November 2004

Outline

- Organization of the global Internet
- Example of domains
 - Intradomain routing
- BGP basics
- BGP in large networks
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks

How to route IP packets in the global Internet ?

A map of the global Internet in 2000 ...

Organization of the Internet

- Internet is composed of more than 10.000 autonomous routing domains
 - A domain is a set of routers, links, hosts and local area networks under the same administrative control
 - A domain can be very large...
 - AS568: SUMNET-AS DISO-UNRRA contains 73154560 IP addresses
 - A domain can be very small...
 - AS2111: IST-ATRIUM TE Experiment a single PC running Linux...
 - Domains are interconnected in various ways
 - The interconnection of all domains should in theory allow packets to be sent anywhere
 - Usually a packet will need to cross a few ASes to reach its destination

Types of domains

- Transit domain
 - A transit domain allows external domains to use its own infrastructure to send packets to other domains

- Examples
 - UUNet, OpenTransit, GEANT, Internet2, RENATER, EQUANT, BT, Telia, Level3,...

Types of domains (2)

Stub domain

- A stub domain does not allow external domains to use its infrastructure to send packets to other domains
 - A stub is connected to at least one transit domain
 - Single-homed stub : connected to one transit domain
 - Dual-homed stub : connected to two transit domains

- Content-rich stub domain
 - Large web servers : Yahoo, Google, MSN, TF1, BBC,...
- Access-rich stub domain

• ISPs providing Internet access via CATV, ADSL, ... BGP/2003.1.6 © O. Bonaventure, 2003

A Stub domain : Belnet

A transit domain : Easynet

© O. Bonaventure, 2003

A transit domain : GEANT

© O. Bonaventure, 2003

A transit domain : BT/IGnite

BGP/2003.1.10

A large transit domain : UUNet

Outline

- Organization of the global Internet
 - Example of domains
- Intradomain routing
- BGP basics

- BGP in large networks
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks

Architecture of a normal IP router

0

Internet routing

• Exterior Gateway Protocol (EGP)

- Routing of IP packets between domains
 - Each domain is considered as a blackbox

BGP/2003.1.14

© O. Bonaventure, 2003

Intradomain routing

Goal

- Allow routers to transmit IP packets along the best path towards their destination
 - best usually means the shortest path
 - Shortest measured in seconds or as number of hops
 - sometimes best means the less loaded path
- Allow to find alternate routes in case of failures

• Behavior

- All routers exchange routing information
 - Each domain router can obtain routing information for the whole domain
 - The network operator or the routing protocol selects the cost of each link

Three types of Interior Gateway Protocols

- Static routing
 - Only useful in very small domains
- Distance vector routing
 - Routing Information Protocol (RIP)
 - Still widely used in small domains despite its limitations
- Link-state routing
 - Open Shortest Path First (OSPF)
 - Widely used in enterprise networks
 - Intermediate System- Intermediate-System (IS-IS)
 - Widely used by ISPs

Distance vector routing

• Principle

- Router configuration
 - Cost associated with each link
- Each router sends <u>periodically</u> a distance vector containing, for each known prefix, :
 - 1. The IP prefix
 - 2. The distance between itself and the destination
 - The distance vector is a summary of the router's routing table
- Each router receives its neighbor's distance vectors and builds its routing table based on those vectors

Issues with distance vector routing

- How to deal with link failures ?
 - Routers should send their distance vector when they detect the failure of one of their links
- How to avoid the count-to-infinity problem ?
 - Utilize a non-redundant star shaped network
 - Limit the maximum distance between routers
 - For RIP, $\infty = 16$!
 - Split horizon
 - Router A does not advertise to router B the routes for which it sends packets via router B
 - Split horizon with Poison reverse

Link state routing

- Principle
 - Each router builds link state packet containing its local topology
 - Link state packets are created at regular intervals and when the local topology changes
 - Link state packet is reliably flooded to all routers inside the domain
 - Each router knows the complete domain topology
 - Computes routing tables by using Dijkstra
 - The best path is the path with the smallest cost

BGP/2003.1.19

IP forwarding

- Usually
 - Forwarding table contains, for each prefix
 - The prefix
 - The best path (outgoing interface) to reach this prefix
- Sometimes
 - Forwarding table contains, for each prefix
 - The prefix
 - N equal cost paths to reach this prefix
 - A first path (outgoing interface) to reach this prefix
 - A second path (outgoing interface) to reach this prefix
 - A third path (outgoing interface) to reach this prefix
 - ♦ .
 - A load balancing mechanism is used to send the IP packets over the N available paths

Load balancing algorithms

- Simple solution
 - Round-Robin or variants to dispatch packets on a per packet basis
 - Advantages
 - easy to implement since number of paths is small
 - traffic will be divided over the equal cost paths on a per packet basis
 - each path will carry the same amount of traffic
 - Drawbacks
 - two packets from the same TCP connection may be sent on different paths and thus be reordered
 - TCP performance can be affected by reordering

Load balancing algorithms (2)

- How to perform load balancing without maintaining state for each TCP connection ?
 - Principle
 - concatenate IP src, IP dest, IP protocol, Src port, and Dest port from the IP packet inside a bit string
 - bitstring = [IP src:IP dest:IP protocol:Src port:Dest port]
 - compute path = Hash(bitstring) mod P
 - hash function should be easy to implement and should produce very different numbers for close bitstring values
 - candidate hash functions are CRC, checksum, ...
 - Advantages
 - all packets from TCP connection sent on same path
 - traffic to a server will be divided over the links
 - Drawback
 - does not work well if a few TCP connections carry a large fraction of the total traffic

Summary

- Types of domains
 - Transit domain
 - Stub domain
- Intradomain routing
 - Selects the best route towards each destination based on one metric
 - Static routing
 - Distance vector routing
 - Link-state routing
 - Load balancing methods allow to place several paths in the forwarding table