

Interdomain routing with BGP4 Part 3/5

Olivier Bonaventure

Department of Computing Science and Engineering Université catholique de Louvain (UCL) Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve (Belgium)

URL:http://www.info.ucl.ac.be/people/OBO

BGP/2003.3.1

Outline

- Organization of the global Internet
- BGP basics
- BGP in large networks
- The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks

BGP/2003.3.2

BGP and IP Second example

- Problem
 - How can R2 (resp. R4) advertise to R4 (resp. R2) the routes learned from AS10 (resp. AS30) ?

BGP and IP Second example (2)

- First solution
 - Use IGP (OSPF/ISIS,RIP) to carry BGP routes
- Drawbacks
 - IGP may not be able to support so many routes
 - IGP does not carry BGP attributes like ASPath !

The AS7007 incident

- These routes were shorter than the real routes ...
- Two hours of disruption for large parts of the Internet !

iBGP and eBGP

- Solution
 Use PCD to corrugal
 - Use BGP to carry routes between all routers of domain
 - Two different types of BGP sessions
 - eBGP between routers belonging to different ASes
 - iBGP between each pair of routers belonging to the same AS
 - Each BGP router inside ASx maintains an iBGP session with all other BGP routers of ASx (full iBGP mesh)

Note that the iBGP sessions do not necessarily follow physical
 © 0. Bonaventure, 2003

iBGP versus eBGP

- Differences between iBGP and eBGP
 - local-pref attribute is only carried inside messages sent over iBGP session
 - Over an eBGP session, a router only advertises its best route towards each destination
 - Usually, import and export filters are defined for each eBGP session
 - Over an iBGP session, a router advertises only its best routes learned over eBGP sessions
 - A route learned over an iBGP session is *never* advertised over another iBGP session
 - Usually, no filter is applied on iBGP sessions

iBGP and eBGP : Example

Note that the next-hop and the AS-Path of BGP update messages are only updated when sent over an eBGP BGP/2003.38

iBGP and eBGP Packet Forwarding

iBGP and eBGP Packet Forwarding (2)

BGP/2003.3.10

© O. Bonaventure, 2003

Using non-BGP routers

- What happens when there are internal backbone routers between BGP routers inside an AS ?
 - iBGP session between BGP routers is easily established when IGP is running since iBGP runs over TCP connection
 - How to populate the routing table of the backbone routers to ensure that they will be able to route any IP packet ?

Using non-BGP routers (2)

MPLS in large ISP networks

- Only one BGP table lookup inside the AS
 - Use a hierarchy of labels
 - top label is used to reach egress router
 - second label is used to reach eBGP peer

Using non-BGP routers (3)

- Use IGP (OSPF/IS-IS RIP) to redistribute interdomain routes to internal backbone routers
- Drawbacks
 - Size of BGP tables may completely overload the IGP
- Make sure that BGP routes learned by R2 and injected inside IGP will not be re-injected inside BGP
 BGP/2003.3.1 by R4 !

Using non-BGP routers (4)

- Run BGP on internal backbone routers
- Internal backbone routers need to participate in iBGP full mesh
 - Internal backbone routers receive BGP routes via iBGP but never advertise any routes
 - Remember : a route learned over an iBGP session is never advertised over another iBGP session

The roles of IGP and BGP

• Role of the IGP inside AS20

12.0.0.0/8

- Distribute internal topology and internal addresses R2-R4-R5)
- Role of BGP inside AS20
 - Distribute the routes towards external destinations
- ◆ IGP must run to allow BGP routers to establish iBGP sessions © O. Bonaventure, 2003

The iBGP full mesh

Drawback N*(N-1)/2 iBGP sessions for N routers

BGP/2003.3.17

© O. Bonaventure, 2003

Outline

- Organization of the global Internet
- BGP basics
- BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks

BGP/2003.3.18

How to scale iBGP in large domains ?

- Each router is configured with two AS numbers
 - Its confederation AS number
 - Its Member-AS AS number
- Usually, a single IGP covers the whole domain

Confederations : example

- On the eBGP session between R2 and RX, R2 belongs to AS20
- On the eBGP session between R5 and RY, R5 belongs to AS20
- On the eBGP session between R1 and R6, R1 belongs to AS65020 and R6 belongs to AS65021

BGP/2003.3.20

Confederations : example (2)

© O. Bonaventure, 2003

Confederations : example (3)

 When propagating an UPDATE via eBGP to a router outside its confederation, R5 removes the internal path from the AS_Path and inserts its Confederation AS number in the AS_PATH

Route reflectors An alternative to confederations

- Route reflectors
 - A route reflector is a special router that is allowed to propagate the routes learned over iBGP sessions on other iBGP sessions

Behavior of a Route Reflector

Two types of iBGP peers of a route reflector

Behavior of a Route Reflector

- Route received from an eBGP session or a client peer
 - Select best path
 - Advertise to
 - All client peers
 - All non-client peers
- Route received from non-client peer
 - Select best path
 - Advertise to :
 - All client peers

Fault tolerance of route reflectors

- How to avoid having the RR as a single point of failure ?
 - Solution
 - Allow each client peer to be connected at 2 RRs

- Issue
 - Configuration errors may cause redistribution loops
 - ORIGINATOR_ID used to carry router ID of originator of route
 - CLUSTER_LIST contains the list of RR that sent the UPDATE message inside the current AS

Route reflectors : an example

- R2 and R3 are clients of Route Reflector RR1
- RR1 and RR6 are in iBGP full mesh
- R5 is client of Route Reflector RR6

Route reflectors : an example (2)

 RR1 will select its best path towards 1.0.0.0/8 and will re-advertise it by adding the ORIGINATOR_ID and the CLUSTERID

Route reflectors : an example (3)

- RR1 advertises this path to its client peer (R3)
 - the path is not advertised to R2 since R2 already received it
- RR1 advertises this path to its non-client peer (RR6) © O. Bonaventure, 2003

Route reflectors : an example (4)

- RR6 advertises the path to 1.0.0.0/8 via RX-R2
 - to its client peer R5
- R5 will remove ORIGINATOR_ID and CLUSTER_ID before advertising the path to RY via eBGP

BGP/2003.3.30

Hierarchy of route reflectors

 In large domains, a hierarchy of route reflectors can be built

Confederations versus Route reflectors

- Confederations
 - Solves iBGP scaling
 - Redundancy with iBGP full-mesh inside each MemberAS
 - Possible to run one IGP per Member AS
 - Requires manual router configuration
 - Can be used when merging domains
 - Can lead to some routing oscillations

- Route reflectors
 - Solves iBGP scaling
 - Redundancy by using Redundant RRs
 - Usually a single IGP for the whole AS
 - Requires manual router configuration
 - Can lead to some routing oscillations

Outline

- Organization of the global Internet
- BGP basics
- BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
- Scalable routing policies
 - The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks

BGP/2003.3.33

The Community attribute

• Principle

- Optional transitive attribute containing a set of communities
- each community acts as a marker
 - one community is represented as a 32 bits value
 - usually routes with same marker are treated same manner
- Standardized communities
 - NO_EXPORT (0xFFFFF01)
 - NO_ADVERTISE (0xFFFFF02)
- Delegated communities
 - 65536 communities have been delegated to each AS
 - ASX65536 ASX:0 through ASX:65535

Scalable routing policies with communities

- Principle
 - attach same community value to all routes that need to receive the same treatment

More complex routing policies with communities

- Other utilizations of communities
 - Research ISP providing two types of services
 - Access to research networks for universities
 - Access to the commercial Internet for universities and government institutions
 - Šolution
 - Tag routes learned from research network and commercial Internet
 - Only announce the universities to research network
 - Only advertise research network to universities
 - Commercial ISP providing several transit services
 - Full transit service
 - Announce all known routes to all customers
 - Advertise customer routes to all peers, customers, providers
 - Client routes only
 - Only advertise to those customers the routes learned from customers, but not the routes learned from peers
 - Advertise the routes learned from those customers only to customers
Other utilizations of communities

- Communities used for tagging
 - Community attached by router that receives route to indicate country where route was received
 - Example (Eunet, AS286)
 - 286:1000 + countrycode for Public peer routes
 - 286:2000 + countrycode for Private peer routes
 - 286:3000 + countrycode for customer routes
 - Another example (C&W, AS3561)
 - 3561:SRCC
 - S : Peer or Customer
 - R : Regional Code
 - CC : ISO3166 country code
 - Community to indicate IX where route was learned
 - Example : AS12369 (Global Access Telecommunications)
 - 13129:2110 : route leared at DE-CIX
 - 13129:2120 : route learned at INXS
 - 13129:2130 : route learned at SFINX

Issues with communities

Issues

- A router may easily add community values
- The community attribute is optional and transitive
 - A community value added by one router could be propagated to the global Internet
 - In Jan 2003, 50% of the BGP routes contained communities
 - Some routes may contain several tens of communities
- The semantics of communities is defined locally
 - Some ASes advertise the semantics of their communities by using RPSL
 - Most of the community values that a router receives are useless, but they consume memory and some CPU and may cause BGP UPDATEs to be widely distributed
- Best Current Practice
 - If you use communities, make sure that they are not advertised uselessly to the entire Internet...

Outline

- Organization of the global Internet
- BGP basics
- BGP in large networks
 - The needs for iBGP
 - Confederations and Route Reflectors
 - Scalable routing policies
- The dynamics of BGP
- Interdomain traffic engineering with BGP
- BGP-based Virtual Private Networks

BGP/2003.3.39

The dynamics of BGP

 Ideally, BGP routes should be stable and a BGP router should seldom receive messages
 On the global Internet, things are less simple

A closer look at the BGP messages

- One month study of a client of AS2611
 - Captured all outgoing traffic sent to AS2611
 - Captured all BGP messages received from AS2611
- Some findings
 - Received advertisements for 103,853 # AS Paths
 - But
 - 50% of those AS Paths appeared in our BGP routing table for less than 9 minutes
 - Other studies have shown that a small number of prefixes were responsible for most BGP messages
 - Only 31,151 AS Paths were actually used to send packets
 - 95% of all the traffic sent by the stub AS was transmitted over 13,000 AS Paths that were stable for more than 99% of time

Why so many BGP messages ?

- The Internet is large and complex
- A small remote event may result in sending BGP messages to all BGP routers

Changes in BGP policies

• How to change the import/export policies used by one BGP router ?

- Naive solution
 - Change import/export filters
 - Stop BGP sessions
 - Peers may need to send lots of Withdraw messages !
 - Reestablish BGP sessions
- BGP router will receive and process lots of Update messages !
 © 0. Bonaventure, 2003

How to smoothly change export filters ?

- Principle
 - Update export filters that need to be changed
 - For each BGP session using a modified filter
 - Scan BGP routing tables to determine the BGP messages to be sent according to the new filter
 - Send the required BGP messages

How to smoothly change import filters ?

- First solution
 - Store all UPDATE messages (unmodified) received from each peer before applying the import filter
 - When an import filter changes
 - Apply the new filter to the stored UPDATE messages
- Drawback
 - Memory consumption

How to smoothly change import filters (2)?

Second solution

- Do not store received UPDATE messages
- When an import filter changes
 - Send the ROUTE_REFRESH BGP message to request the concerned peer to send again <u>all his messages</u>
 - Apply the new filter to BGP messages received after the transmission of the ROUTE_REFRESH

BGP/2003.3.46

© O. Bonaventure, 2003

Another reason for the BGP messages

• In some cases, BGP may try several paths

 Routers will process the withdraw message and ... advertise alternate routes to their peers

Another reason for the BGP messages (2)

C processes first the withdraw

Routing table of ARouting table of B1/8 via B (Path: B-R) (best)1/8 via A (Path: A-R)1/8 via C (Path: C-R)R via C (Path: C-R) (best)• A learns a worse (but valid) route towards 1/8• C sends withdraw to B since previous advertised path
(C-R) is not available anymore and C has chosen route
via BBGP/2003.3.48

Another reason for the BGP messages (3)

- C learns a longer path towards 1/8
- B sends a withdraw to A since its only route is via A

Another reason for the BGP messages (4)

• B and C learn that their route via A is invalid

How to reduce the number of unnecessary BGP messages ?

- Avoid transmitting messages too frequently
 - Two UPDATE messages sent by the same BGP peer and advertising the same route should be separated by at least

MinRouteAdvertisementInterval (MRAI) seconds

- Default value for MRAI : 30 seconds
- Advantage
 - Reduces the number of unnecessary BGP messages
- Drawback
 - May delay the propagation of BGP messages and thus decrease the convergence time
 - For this reason, MRAI is usually disabled on iBGP sessions

BGP dampening

Observation

- Most routes do not change frequently
- A small fraction of the routes are responsible for most of the BGP messages exchanged
 - Can we penalize those unstable routes to preserve the more stable routes ?
- Principle
 - Associate a penalty counter to each route
 - Increase penalty counter each time route changes
 - Use exponential decay to slowly decrease penalty counter with time
 - Routes with a too large penalty are suppressed

BGP Dampening parameters

- Main parameters of BGP dampening
 - Penalty per BGP message
 - Penalty per withdraw message
 - Penalty per attribute change in Update message
 - Penalty per Update message
 - Cutoff threshold
 - Penalty value above which route is suppressed
 - Reuse threshold
 - Minimum penalty value required to reuse a route
 - Halftime
 - For the exponential decay
 - Maximum suppress time
 - A route cannot be suppressed longer than this time

BGP Dampening : example

Evaluation of BGP Dampening

• Advantages

 Only penalizes unstable routes without affecting usually stable routes

Issues

- What are the best configurations values to use ?
 - No definite scientific answer today
- ISPs often don't apply dampening on all sessions
 - No dampening on iBGP sessions
 - No dampening on eBGP sessions with customers
 - No dampening for the root/GTLD DNS prefixes
 - Some propose to use more aggressive dampening parameters for longer prefixes

Summary

- iBGP versus eBGP
 - EBGP distributes routes between domains
 - IBGP distributes interdomain routes inside a domain
- iBGP sessions inside a domain
 - Full mesh (unscalable)
 - Route reflectors (change iBGP processing rule)
 - Confederations (useful when merging domains)
- Scalable routing policies with communities
- The dynamics of BGP
 - A few sources produce most BGP UPDATES
 - How to reduce the churn
 - MRAI timer
 - Dampening

BGP/2003.3.56 Route refresh capability